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Abstract. We show that all contact manifolds can be obtained by reduction from a universal
contact manifoldR2N+1. We also prove an equivariant version and discuss the relationship with
the corresponding results for symplectic manifolds.

1. Introduction

Symplectic manifolds are the natural geometrical setting for time-independent mechanics; for
time-dependent mechanics attention focuses on contact and cosymplectic manifolds. As is
well known, (symplectic) reduction is a powerful tool to investigate complicated mechanical
systems. It is thus natural to investigate such a procedure also for contact and cosymplectic
manifolds. In [2] a version of the Marsden–Weinstein symplectic reduction theorem for
contact and cosymplectic manifolds has been proven. More recently in [6] a more general
reduction procedure for contact manifolds (in a wider sense using foliations/ideals of
(contact) forms) has been introduced: reduction by a closed submanifoldC; the author
characterized such a reduction by the geometry of its graph and of the submanifoldC. In
[9] the even more general reduction of Jacobi manifolds has been discussed.

By Darboux’s theorem,R2N with its canonical symplectic form is the local model for any
symplectic manifold [1]. In [7, 8] it has been shown that it is also a universal model in the
context of reduction, i.e. any symplectic manifold can be obtained by reduction from some
R2N . Recently this result has been extended to cosymplectic manifolds [11]. However, in
that case the local model, i.e.R2N+1 ∼= R×T ∗RN with its canonical cosymplectic structure,
cannot serve as universal model. In fact, a universal model for cosymplectic manifolds in
the context of reduction is of the formR× T ∗(RN × Tk).

The aim of this paper is to discuss the case of contact manifolds. Although contact
and cosymplectic manifolds have the sameR2n+1 as local support, they have different local
structures. In local coordinates(t, q1, . . . , qn, p1, . . . , pn) the canonical contact formηn is
given byηn = dt +∑n

i=1pi dqi , and the canonical cosymplectic structure(η,�) is given
by the formsη = dt and� = ∑n

i=1 dqi ∧ dpi . Since they have different local models,
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it should not come as a surprise that they also have different universal models. In fact,
we prove that every contact manifold can be obtained by reduction from someR2N+1 with
its canonical contact form. We also prove an equivariant version of this result. Finally,
we consider the case of regular contact manifolds and discuss the relationship between the
universal models for contact and symplectic manifolds.

2. Contact manifolds and their reduction

A contact manifoldis a pair (M, η) in which M is an odd, say(2n + 1), dimensional
manifold andη a 1-form onM, called thecontact 1-form, such thatη ∧ (dη)n is nowhere
zero (see [2, 3, 5, 10, 12]). If for an arbitrary 1-formη we denote byb: TM → T ∗M the
vector bundle morphism

X ∈ TxM 7→ b(X) = ι(X)(dη)x + (ι(X)ηx) · ηx ∈ T ∗x M
thenη is a contact 1-form if and only ifb is a vector bundle isomorphism (see [2]). If(M, η)
is a contact manifold then the vector fieldR = b−1(η) is the unique vector field onM such
that ι(R)η = 1 and ι(R) dη = 0; R is called theReeb vector fieldof M. Two contact
manifolds (M1, η1) and (M2, η2) are said to beisomorphic if there is a diffeomorphism
F :M1→ M2 such thatF ∗η2 = η1 (and thusF∗R1 = R2).

The canonical example of a contact manifold is given by the product spaceR × T ∗Q
with Q an arbitrary manifold, endowed with the 1-formηQ defined byηQ = dt+θQ, where
t is the coordinate onR andθQ the canonical 1-form onT ∗Q. In particular, if(q1, . . . , qn)

are local coordinates onQ, thenηQ is given by

ηQ = dt +
n∑
i=1

pi dqi (1)

where thepi are the associated coordinates in the fibres ofT ∗Q. In fact, this expression
is the local model for any contact manifold: a Darboux theorem (see [2, 12]) states
that around each pointm of a contact manifold(M, η) there exist local coordinates
(t, q1, . . . , qn, p1, . . . , pn), called Darboux coordinates, such thatη has the form (1). In
Darboux coordinates the Reeb vector field obviously has the formR = ∂t .

In order to describe the contact reduction procedure, suppose that(M, η) is a contact
manifold and suppose thatC ⊂ M is a submanifold satisfying the following conditions:

(i) R is tangent toC;
(ii) the characteristic distributionF = kerη|C ∩ ker dη|C has constant rank onC, i.e.F

is a foliation onC;
(iii) the space of leavesMr = C/F is a differentiable manifold and the canonical

projectionπ :C → Mr is a submersion.
If these conditions are satisfied, standard arguments show that there exists a unique 1-form
ηr on Mr such thatπ∗ηr = η|C . Furthermore, it is not hard to show that the couple
(Mr, ηr) is a contact manifold whose Reeb vector fieldRr is given byRr = π∗R|C . In
these circumstances we will say thatthe contact manifold(Mr, ηr) is the reduction of(M, η)
by the submanifoldC. Moreover, the reader can easily establish the following propositions.

Proposition 2.1. If a contact manifold(M2, η2) is the reduction of a contact manifold
(M1, η1) by the submanifoldC1 ⊂ M1, and if (M1, η1) is the reduction of a contact manifold
(M0, η0) by the submanifoldC0 ⊂ M0, then (M2, η2) is the reduction of(M0, η0) by the
submanifoldC2 = π−1

0 (C1), whereπ0:C0→ M1 denotes the canonical projection.
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Proposition 2.2. Let (Mr, ηr) be the reduction of the contact manifold(M, η) by the
submanifoldC. If the Reeb vector fieldR is complete onM and ifC is closed inM, then
the Reeb vector fieldRr of (Mr, ηr) is complete too.

3. The universal model

The Darboux theorem tells us thatR2n+1 ≡ R×T ∗Rn with the 1-formηn = dt +∑i pi dqi

is a local model for any contact manifold. The next proposition tells us that it is also the
universal model as far as reduction of contact manifolds is considered.

Theorem 3.1. Let (M, η) be a contact manifold. Then there exists an integerN and a
submanifoldC ⊂ R2N+1 such that(M, η) is the contact reduction of(R2N+1, ηN) by the
submanifoldC.

Proof. The idea of the proof is to break the reduction into two reductions, which are
concatenated at the end by proposition 2.1.

For the first step we defineM1 = R× T ∗M with its contact formη1 ≡ ηM = dt + θM ;
as said before, its Reeb vector field is given byR1 = ∂t . Now let D ⊂ R ×M be the
domain of the flow of the vector fieldR onM, and letf :D→ M1 be the embedding

f (t,m) = (t, ηm) ∈ R× T ∗mM.
In other words,f is a diffeomorphism betweenD and the submanifoldC1 = f (D) ⊂ M1.
ObviouslyR1 is tangent toC1, and thus we can try to perform contact reduction with
respect toC1. Sincef is a diffeomorphism, we perform the computations inD. Now
f ∗η1 = dt + η, and thus the characteristic distribution ker(f ∗η1) ∩ ker(f ∗ dη1) is spanned
by the vector fieldR − ∂t . By definition of D, each integral curve of this vector field
intersects{0} × M ≡ M in exactly one point. Since the restriction off ∗η1 to {0} × M
equalsη, we conclude that(M, η) is the contact reduction of(M1, η1) by the submanifold
C1.

For the second step we invoke Whitney’s embedding theorem to find an embedding
i:M → RN for some integerN . We then defineM2 = R × T ∗RN with its contact form
η2 = ηN . Denoting byπ : T ∗RN → RN the canonical projection, we define the submanifold
C2 = R× π−1(i(M)) ⊂ M2, with the projectionp:C2→ M1 defined by

p(t, βi(m)) = (t, i∗βi(m)).
This is well defined because each point ofC2 is by definition of the form(t, βi(m)). A direct
computation yields the equalityp∗η1 = (η2)|C2, from which we deduce (using thatη1 is a
contact form onM1) that ker(Tp) equals ker((η2)|C2) ∩ ker((dη2)|C2). Since the fibres of
p are connected, we conclude thatM1 is the quotient ofC2 by the characteristic foliation,
and thus that(M1, η1) is the contact reduction of(M2, η2) by the submanifoldC2.

We finish the proof by invoking proposition 2.1 to create out of these two reductions a
single contact reduction. �

Remark 3.2. Although the Reeb vector field of(R2N+1, ηN), which is∂t , is complete, the
Reeb vector field of a general contact manifold need not be complete. It thus follows from
proposition 2.2 that we cannot always take the submanifoldC in theorem 3.1 to be closed.
In the proof of theorem 3.1 this is reflected by the fact that the domainD of the flow ofR
need not be the whole ofR×M.
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We now turn our attention to contact manifolds with symmetry. A smooth action of a Lie
groupG on a contact manifold(M, η) is said to be acontact actionif it preserves the
contact formη, i.e. for all g ∈ G we haveg∗η = η. One also says thatG is a symmetry
group of the contact manifold(M, η). If (Mr, ηr) is the contact reduction of(M, η) by the
submanifoldC ⊂ M, and if thisC is invariant under the action ofG, we have a natural
induced smooth action ofG on Mr . Moreover, this induced action is a contact action. In
such a case we will say that(Mr, ηr ,G) is the equivariant contact reduction of(M, η,G)
by the (invariant) submanifoldC. Under certain hypotheses our universal model remains
valid in the equivariant context.

Theorem 3.3. Let G act smoothly on a contact manifold(M, η). Suppose that the action
is a contact action, thatG is compact and thatM is of finite type. Then there exists an
integerN , an orthogonal action ofG on RN with a canonically induced contact action on
R×T ∗RN , and an invariant submanifoldC ⊂ R2N+1 such that(M, η,G) is the equivariant
contact reduction of(R2N+1, ηN,G) by C.

Proof. We follow the steps of the proof of theorem 3.1. Forg ∈ G we define the action
on M1 = R × T ∗M by g(t, βm) = (t, (g−1)∗βm) ∈ R × T ∗g(m)M. It is standard that this
action onM1 is a contact action. Moreover, sinceη and thusR are invariant underG,
the submanifoldC1 is invariant under theG-action onM1. It thus remains to prove that
the induced action on the contact reductionMr = M coincides with the initial action. But
this follows easily once we letG act trivially on R and realize that then the embedding
f :D→ M1 is equivariant. We conclude that(M, η,G) is the equivariant contact reduction
of (M1, η1,G) by the submanifoldC1.

For the second step we use our hypotheses. SinceG is compact andM is of finite type,
we can invoke the Mostow–Palais theorem (see [13, 14, 4, pp 173, 218]) to conclude that
there exist (i) an integerN , (ii) an orthogonal action ofG on RN and (iii) an equivariant
embeddingi:M → RN . As in the first step above, we lift the action ofG on RN to a
contact action onR×T ∗RN . It now is easy to show thatC2 is invariant under thisG-action,
and that the projectionp:C2 → M1 is equivariant. We conclude that(M1, η1,G) is the
equivariant contact reduction of(R2N+1, ηN,G) by the submanifoldC2.

The proof is finished once the reader ascertains that proposition 2.1 is also true in the
equivariant case. �

4. Regular contact reduction and symplectic reduction

In this section we want to compare contact reduction with symplectic reduction, which is the
following procedure. Let(V , ω) be a symplectic manifold, and letB ⊂ V be a submanifold
such thatF = kerω|B has constant rank (onB). If the space of leavesVr = B/F admits
the structure of a manifold such that the canonical projectionπ :B → Vr is a submersion,
then there exists a unique symplectic formωr on Vr such thatπ∗ωr = ω|B . In such a
case one says that(Vr, ωr) is thesymplectic reduction of(M,ω) by the submanifoldB. In
[7] and [8] it has been shown thatT ∗RN is a universal model for (equivariant) symplectic
reduction.

Now let (M, η) be a contact manifold. If the spaceV of orbits of the Reeb vector
field R, V = M/R, admits the structure of a manifold such that the canonical projection
π :M → V is a submersion, then there exists a unique symplectic formω on V such that
π∗ω = dη. In such a case one says that(M, η) is a regular contact manifold(see [3, 5, 15]).
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If the Reeb vector fieldR is complete, we can define the period functionλ onM by

λ(m) = inf
t>0,φt (m)=m

t

whereφt denotes the flow ofR. SinceR vanishes nowhere, it follows thatλ(m) is strictly
positive (possibly infinite). Using the results of [15] (see also [3] and [5]), one can show
the following result.

Proposition 4.1. Let (M, η) be a regular contact manifold with complete Reeb vector field
R. Then the period functionλ is constant onM and we have the two following cases.

(i) If λ(m) ≡ c < ∞, thenM is a principal fibre bundle overV = M/R with group
S1; the 1-formη is a connection form on this bundle with curvature form�. Moreover,
the 2-form�/c determines an integral cohomology class onV , which is the characteristic
class of the circle bundleM → V .

(ii) If λ ≡ ∞, thenM is a principal fibre bundle overV = M/R with groupR; the
1-form η is a connection in this bundle with curvature form�.

Given a regular contact manifold(M, η) and a contact reduction(Mr, ηr) of (M, η) by a
submanifoldC ⊂ M, it is tempting to claim that(Mr, ηr) is a regular contact manifold and
thatVr = Mr/Rr is the symplectic reduction ofV = M/R by the submanifoldB = C/R.
However, apart from the technical problem thatB need not be a submanifold ofV , a
moment’s thought will show that theorem 3.1 tells us that either all contact manifolds are
regular, or the claim is false, simply because the universal model is obviously regular. In
order to refute the claim, it thus suffices to exhibit a non-regular contact manifold(M, η).

Example 4.2. (See also [3].) LetM be the three-dimensional torusT3 ≡ (R/2πZ)3 with
the contact formη = cos(z) dx + sin(z) dy, where(x, y, z) are the standard coordinates in
R3, confounded with the induced (cyclic) coordinates onT3. The Reeb vector field is given
by

R = cos(z)∂x + sin(z)∂y

which is complete becauseT3 is compact. For fixedz, the integral curves ofR are ‘straight
lines’ in T2 with slope α = tan(z). There are now two ways to see that this contact
manifold is not regular. Either by noting that for irrationalα the quotient is not a manifold,
or by noting that the period functionλ is not constant onM and to conclude by applying
proposition 4.1.

Now recall that theorem 3.1 says that every contact manifold, and thus in particular every
regular contact manifold, can be obtained by reduction from a regular universal contact
manifold. But the proof of theorem 3.1 consists of two (concatenated) steps. It is thus
interesting to note that in the regular case even the intermediate result is regular.

Lemma 4.3. Let (M, η) be a regular contact manifold with Reeb vector fieldR. Then
(M1 = R × T ∗M,η1 = dt + θM) is a regular contact manifold for which we have the
commutative diagram:
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C1 M1 = R× T ∗M

M B1 = C1/R1 ≡ η(M)

V = M/R

V1 = M1/R1 ≡ T ∗M

-

-
?

?
@

@@R

@@R@@R

HereC1 is an open subset ofR×η(M) ⊂ R×T ∗M, which is the whole ofR×η(M) in case
R is complete. In particular, the symplectic manifold(V , ω) is the symplectic reduction of
the (canonical) cotangent bundle(T ∗M, dθM) by the submanifoldη(M).

Proof. ThatV1 equalsT ∗M and thatB1 equalsη(M) follows immediately from the proof
of theorem 3.1. To show thatV is the symplectic reduction ofV1 by B1 we note that
η:M → B1 ⊂ T ∗M is a diffeomorphism. Since dθM is the canonical symplectic form on
T ∗M, it follows easily thatη∗((dθM)|B1) = dη, and thus(B1, (dθM)|B1) is isomorphic to
(M, dη). Since ker(dη) is generated by the Reeb vector fieldR, the result follows. �

Remark 4.4. If in lemma 4.3 the vector fieldR is complete, the announced result can also
be deduced from proposition 4.1 and the constructions used in [7] (in caseλ = ∞ a slight
modification is needed).

Combining the results of lemma 4.3 with the second step in the proof of theorem 3.1, one
can easily prove the following result.

Theorem 4.5. Let (M, η) be a regular contact manifold with Reeb vector fieldR. Then
there exist an integerN , a submanifoldB of T ∗RN ≡ R2N , and an open subsetC of
R× B ⊂ R× T ∗RN with the following properties.

(i) The symplectic manifoldV = M/R is the symplectic reduction of the (canonical)
cotangent bundleT ∗RN by the submanifoldB.

(ii) The (regular) contact manifoldM is the contact reduction ofR × T ∗RN by the
submanifoldC.

(iii) If R is complete,C is the whole ofR× B.

We now turn our attention to regular contact manifolds(M, η) with symmetry. IfG acts
smoothly onM preservingη, it also preserves the Reeb vector fieldR. It then follows that
there exists an induced smooth action ofG on V = M/R which preserves the symplectic
formω onV induced by dη. In [8] it has been shown that the existence of a momentum map
is a necessary condition for the existence of a universal equivariant model for symplectic
manifolds (simply because the universal modelR2N always allows a momentum map, and
the existence of a momentum map is preserved by the reduction procedure). We now show
that, if the symplectic manifold is deduced from a regular contact manifold, then there
automatically exists a momentum map.

Lemma 4.6. Let (M, η) be a regular contact manifold with Reeb vector fieldR and letG
be a symmetry group of(M, η). Denote byπ the canonical projectionπ :M → V = M/R,
and byg the Lie algebra ofG. Then the mapJ :V → g∗ defined by

〈J (π(m)),X〉 = ηm(XM(m))
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is an Ad∗-equivariant momentum map for the induced symplectic action ofG on V . Here
XM denotes the fundamental vector field onM associated toX ∈ g.

Proof. SinceL(R)η = 0 by definition ofR and sinceL(R)XM = −L(XM)R = 0 because
theG-action preservesR, it follows thatL(R)[η(XM)] = 0. This proves thatJ is well
defined onV .

To prove thatJ is a momentum map, we introduce, forX ∈ g, the functionJX:V → R,
v 7→ 〈J (v),X〉. We then have to proveι(XV )ω + dJX = 0, whereXV = π∗XM is the
fundamental vector field onV associated toX ∈ g. Sinceπ∗ is injective, it is sufficient to
prove thatπ∗(ι(XV )ω + dJX) = 0. But this follows from the following calculation

π∗(ι(XV )ω + dJX) = ι(XM)dη + d(ι(XM)η) = L(XM)η = 0

where the last conclusion follows from the invariance ofη.
Finally, to prove equivariance, we compute

〈J (gπ(m)),X〉 = 〈J (π(gm)),X〉 = ηgm(XM(gm)) = (g∗η)m(((Ad(g−1)X)M)(m))

= 〈J (π(m)),Ad(g−1)X〉 = 〈Ad∗(g)J (π(m)),X〉
where we have used the fact thatη is invariant and the formulag∗XM = (Ad(g)X)M , valid
for arbitrary fundamental vector fields. �

We now state the equivariant versions of lemma 4.3 and theorem 4.5; their proofs, which
are left to the reader, are straightforward adaptions of the non-equivariant versions and the
results of [8].

Lemma 4.7. Let (M, η) be a regular contact manifold and letG be a symmetry group of
(M, η). Then the cotangent lift of the action ofG onM to T ∗M, combined with the trivial
action onR, turnsG into a symmetry group of the contact manifoldR× T ∗M. Moreover,
the diagram in lemma 4.3 is equivariant for these actions (together with the induced actions
on T ∗M andV ).

Theorem 4.8. Let (M, η) be a regular contact manifold of finite type and letG be a
compact symmetry group of(M, η). Then there exist an integerN , a submanifoldB of
T ∗RN ≡ R2N , an open subsetC of R×B ⊂ R× T ∗RN and an orthogonal action ofG on
RN with the following properties.

(i) The symplectic manifoldV = M/R is the equivariant symplectic reduction of the
(canonical) cotangent bundleT ∗RN by the submanifoldB.

(ii) The (regular) contact manifoldM is the equivariant contact reduction ofR×T ∗RN
by the submanifoldC.

(iii) If R is complete,C is the whole ofR× B.
For (i) the action ofG on T ∗RN is the cotangent lift of the orthogonal action ofG onRN .
For (ii) the contact action onR× T ∗RN is the cotangent lift of the orthogonal action ofG
on RN to T ∗RN combined with the trivial action onR.

Remark 4.9. If in lemma 4.7 the Reeb vector fieldR of (M, η) is complete, the announced
result can also be deduced from proposition 4.1, lemma 4.6 and the construction used in
[7] and [8] (in the caseλ = ∞ a slight modification is needed).
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